Internet of Things, but what counts as a “thing”?

by Emerson Network Power on 10/26/15 11:50 AM

Internet-Of-Things1

By: Simon Brady

The latest buzz or trend being discussed at almost every IT and technology innovation meeting around the world is currently the Internet of Things (or IoT, as like everything else in the tech world it has been shortened to). We are rapidly moving forward from the original Internet as we know it, built by people for people, and we are connecting devices and machines, allowing them to intercommunicate in a vast network.

The Internet of Things, but what counts as a “thing”? Basically, we can fit almost any object you can think of in this category. You can attribute an IP address to nearly everything that exists within our universe, regardless if it’s a kitchen sink, a closet or an UPS. Everything can be connected to the Internet and can begin to send signals and data towards a server, as long as it has a digital sensor integrated.

Today, roughly 1% of “things” are connected to the Internet, but according to Gartner, Inc. (a technology research and advisory corporation), there will be nearly 26 billion devices on the Internet of Things by 2020.

At first, it might sound a bit scary, right? Hollywood movies and more recently even Professor Stephen Hawking tell us that it’s dangerous if machines talk to other machines and become self-aware. So should we be frightened or overly excited? There is no correct answer, because this new revolution and innovation in the field of technology is still not yet fully understood by people.

Back in history, all great inventions were first doubted and rejected by human kind. Remember how at the early stage of the Internet, some people considered it will be a great failure? Not many envisioned how it would change the world and eventually become an essential part of our lives.

Huge billion dollar companies, like Google, Microsoft, Samsung and Cisco, are investing a lot of money in developing IoT, and this could be the proof that the Internet of Things is here to stay and successful businesses will start building products and services compliant to IoT required functionalities.

So, how does it work? For normal people, interconnecting their own devices can lead to a better life quality and fewer concerns. For example, a smart watch or health monitor bracelet could be connected to a coffee maker, so that when you get out of bed, hot coffee is waiting for you in the kitchen. Temperature sensors in your house will manage heating in each room and even learn when you are home so your boiler is more efficient and you save energy. In making normal everyday life easier, IoT will include household items like parking sensors, washing machines or oven sensors, basically anything that has been connected and networked through a control device. Your fridge can know everything about your diet and your daily calorie intake and react accordingly, sending you updated grocery lists and recommended meal recipes. Already Samsung is building smart fridges to help you keep track of items, tell you when they are out of date and in the future automatically order you milk when you are running low.

But this is the micro-level we’re talking about. Let’s think about autonomous cars, smart cities and smart manufacturing tools. Bridges that can track every vehicle, monitor traffic flow and automatically open and close lanes to help traffic safety; cars that can talk to each other on highways, to help keep rush hour traffic moving and enhancing driver experiences; this is more than simply connecting machines or sensors, it’s using the data from all these connected devices in a way that can significantly improve life as we know it.

The key to the IoT is that all of the connected devices can send data in a very short timeframe, which is critical in many circumstances, but that’s not all. Instead of simply storing the data, it can also immediately analyse it and trigger an action, without requiring any human intervention.

Companies worldwide can greatly benefit from Internet of Things software applications, increasing their product’s efficiency and availability, whilst decreasing costs and negative environmental effects.

In a data center for example, by inter-connecting all active components, including UPS systems, chillers, cooling units, PDU’s, etc, a data center administrator can easily monitor and supervise their group activity. Control solutions like Liebert® iCOM are actually more than simple monitoring interfaces; they can coordinate all of the cooling systems and deliver the required air flow at the temperature needed on demand. When problems arise, alerts and notifications sent to the data center administrator are more than essential, in order to restore them to normal. But wait; shouldn’t this Internet of Things be something new? Liebert iCOM has been on the market for several years now. Let’s clear this up.

The term Internet of Things was first mentioned in 1999, by British visionary Kevin Ashton, but the actual process has been in development for a long time now. You see, the name can be a bit confusing, and indeed it just recently crawled into the mainstream media, so people think it’s something very new. But in fact, major companies have already been using and developing IoT for a couple of years now, changing perspectives on how things should really be done.

However, taking full-advantage of this great innovation in all life aspects is still in its early phase. The greatest challenges that IoT faces in this moment are high costs and security threats. For the time being, IoT solutions can be really expensive, so we’re dealing with an ongoing process of lowering costs, to allow more and more people and businesses to adopt it.

Also, the security breaches can be a reason to be concerned, since IoT is very vulnerable at this point; many hackers have manifested their overwhelming interest in this direction, so developers need to be extremely cautious when it comes to security protocols.

All things considered, we can conclude that the Internet of Things is our huge opportunity to create a better life for everybody, to build a strong foundation in the technology field and develop products and solutions that could actually change the world.

For More Emerson Network Power Blogs, CLICK HERE

Read More

Topics: CUE, PUE, DVL, Thermal Management, monitoring, iCom, KVM, IoT

Choosing Between VSDs and EC Fans. Making the right investment when upgrading fan technology.

by Emerson Network Power on 7/15/15 3:23 PM

Blog_VSD

Fans that move air and pressurize the data center’s raised floor are significant components of cooling system energy use. After mechanical cooling, fans are the next largest energy consumer on computer room air condition (CRAC) units. One way many data center managers reduce energy usage and control their costs is by investing in variable speed fan technology. Such improvements can save fan energy consumption by as much as 76 percent.

With the different options on the market, it may not be clear which technology is best. Today, variable speed drives (VSDs)—also referred to as variable frequency drives or VFDs—and electrically commutated (EC) fansare two of the most effective fan improvement technologies available. The advantages of both options are outlined below to help data center managers determine which fan technology is best for achieving energy efficiency goals.

How do different fan technologies work? 
In general, variable speed fan technologies save energy by enabling cooling systems to adjust fan speed to meet the changing demand, which allows them to operate more efficiently. While cooling units are typically sized for peak demand, peak demand conditions are rare in most applications. VSDs and EC fans more effectively match airflow output with load requirements, adjusting speeds based on changing needs. This prevents overcooling and generates significant energy savings.

With VSDs, drives are added to the fixed speed motors that propel the centrifugal fans traditionally used in precision cooling units. The drives enable fan speed to be adjusted based on operating conditions, reducing fan speed and power draw as load decreases. Energy consumption changes dramatically as fan speed is decreased or increased due to the fan laws. For this reason, a 20 percent reduction in fan speed provides nearly 50 percent savings in fan power consumption.

EC fans are direct drive fans that are integrated into the cooling unit by replacing the centrifugal fans and motor assemblies. They are inherently more efficient than traditional centrifugal fans because of their unique design, which uses a brushless EC motor in a backward curved motorized impeller. EC fans achieve speed control by varying the DC voltage delivered to the fan. Independent testing of EC fan energy consumption versus VSDs found that EC fans mounted inside the cooling unit created an 18 percent savings. With new units, EC fans can be located under the floor, further increasing the savings.

How do VSDs and EC fans compare?

Energy Savings
One of the main differences between VSDs and EC fans is that VSDs save energy when the fan speed can be operated below full speed. VSDs do not reduce energy consumption when the airflow demands require the fans to operate at or near peak load. Conversely, EC fans typically require less energy even when the same quantity of air is flowing. This allows them to still save energy when the cooling unit is at full load. EC fans also distribute air more evenly under the floor, resulting in more balanced air distribution. Another benefit of direct-drive EC fans is the elimination of belt losses seen with centrifugal blowers. Ultimately, EC fans are the more efficient fan technology.

Cooling Unit Type
VSDs are particularly well-suited for larger systems with ducted upflow cooling units that require higher static pressures, while EC fans are better suited for downflow units.

Maintenance 
In terms of maintenance, EC fans offer an advantage. EC fans also reduce maintenance because they have no fan belts that wear and their integrated motors virtually eliminate fan dust.

Installation 
Both VSDs and EC fans can be installed on existing cooling units or specified in new units. When installing on existing units, factory-grade installation is a must.

Payback
In many cases, the choice between VSDs and EC fans comes down to payback. If rapid payback is a priority, then VSDs are likely the better choice. These devices can offer payback in fewer than 10 months when operated at 75 percent.

However, EC fans will deliver greater, long-term energy savings and a better return on investment (ROI). While EC fans can cost up to 50 percent more than VSDs, they generate greater energy savings and reduce overall maintenance costs, ultimately resulting in the lowest total cost of ownership.

Have the experts weigh in. 
Service professionals can be an asset in helping choose the best fan technology for a data center. Service professionals can calculate the ROI from both options, and they can recommend the best fan technologies for specific equipment.

Service professionals trained in optimizing precision cooling system performance can also ensure factory-grade installations, complete set point adjustment to meet room requirements, and properly maintain equipment, helping businesses achieve maximum cooling unit efficiency today and in the future.

Whether you ultimately decide to go with VSDs or EC fans, either way, you’ll be rewarded with a greener data center, more efficient cooling, and significant energy savings that translate into a better bottom line.


Original Emerson Network Power Blog Post

Read More

Topics: data center energy, PUE, Battery, Efficiency, Thermal Management, DCIM, Uptime, the green grid, AHRI, availability, education, KVM, Data Center efficiency, preventative maintenance

Subscribe to Our Blog

Recent Posts

Posts by Tag

see all