## Emerson Network Power Thermal Management – Cooling Overview

Liebert Solutions for the Large Data Center

September 2013



### Agenda

- Thermal management customer requirements
- Liebert solutions for large data centers
  - New and expanded solutions
  - Controls and Monitoring
  - Services
- Data Center design considerations using these solutions
  - Energy and TCO tools
  - Optimizing for Capital and Efficiency
  - Controlling to deliver on the design
  - Other considerations
- Questions

### How to get your CEU credits

- You can be confident your CEUs will be recognized
  - Emerson Network Power CEUs are certified by IACET, the leading standards body in continuing education training
- We focus on delivering training outcomes, giving you substantive knowledge that helps your career and can be measured
- Post-event testing and survey now required for CEUs, by IACET
  - Testing measures your knowledge about the learning objectives discussed in the presentation
  - Those who indicated they want CEUs during webcast registration will receive an email within 5 business days of the presentation, with a link to the online 10-question test and a short presentation survey
  - You have 2 weeks after the email to take the test and do the survey
  - 60% pass rate on test you will be apprised via email of test results and can retake the test once
  - After passing the test, you will receive your CEU certificate for download

#### CEUs

- 1 CEU = 10 content hours
- This class is 1 hour, so you will receive 0.1 CEUs

### What you'll learn today

- Upon successful completion of this training presentation, you will know:
  - 1. Customer requirements for new data centers
  - 2. Liebert offerings for large data centers solutions
  - 3. Design considerations for deploying cooling technologies for optimizing efficiency and capital



## Emerson Network Power Thermal Management

Emerson Network Power makes possible the efficient, reliable and cost effective management of heat in your mission critical facility through unparalleled expertise and the industry's most advanced service, software and equipment technology.



Achieve industry leading Efficiency levels (PUE < 1.1),

Availability approaching 100%

and up to 50% lower capital and operating costs.



# Thermal Management Technology to Solve Customer Needs

Efficiency / Economization

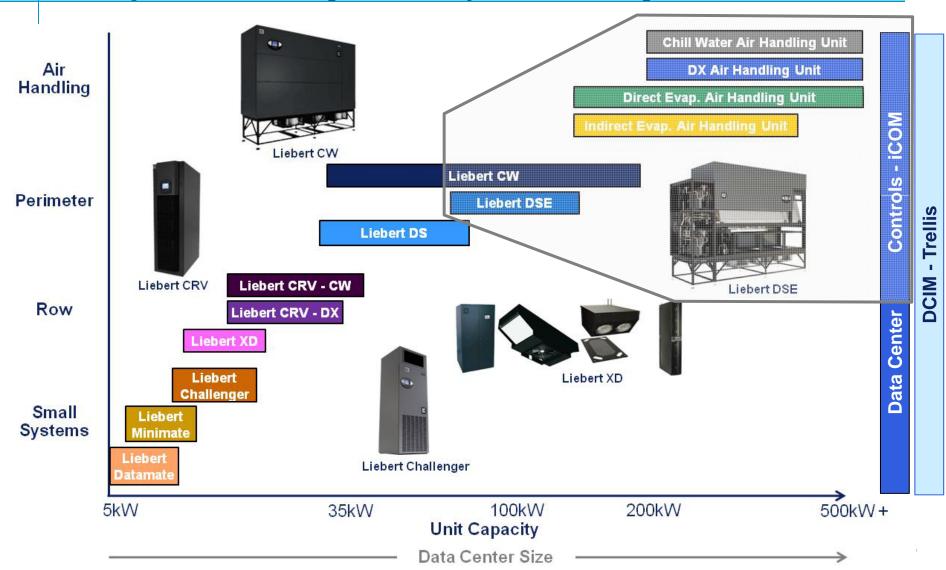
Max Return Air Temps, Variable
Capacity, Aisle Control, Max
Economization Hours, Lowest Max KW

Efficient Capital/Modular/Speed

Solutions that will allow effective growth and use of Capital in Optimized Building Blocks

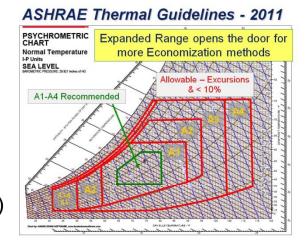
**Solutions** 

Engineered / Optimized, Ease of Connectivity, Custom – Standard Configurations


**Control/Intelligence** 

From the Unit, Aisle to the Whole Data Center – Visibility and Control

**Availability** 


Systems & Controls to Measure, Monitoring & Service to maintain the highest Availability

### Liebert Thermal Mgmt Product Portfolio Complete Coverage for all your cooling needs



### Focus on Economization Methods

- ASHRAE Thermal Guidelines 2011
- Liebert Offering
  - Chillers
    - Water (cooling towers)
    - Air Cooled Chillers (available in Liebert HPC-S)
  - Pumped Refrigerant Liebert DSE
  - Outside Air
    - Integral outside air dampers for DX and CW equipment
    - As part of the Direct Evaporative AHU solution
  - Glycool DX Liebert DS
  - Evaporative
    - Indirect and Direct Evaporative AHU
    - Condensers





### Configurable

Custom

### Large Data Center Solutions

Perimeter



Liebert CWC



Flexibility

Maximum

Exterior (Roof/Side)



Liebert DSC



## Liebert CRAH & Custom Air Handling Solutions Industry Leading Efficiency, Quality, and Service

### **CRAH**

- Expanding standard CRAH from CW181 (24,000 CFM, 300kW) to 35,000 CFM (400kW)
- · Flexible coil sizing
- Lowest fan power strategy
  - EC Fan underfloor
- iCOM controls features



### **Custom Air Handlers**

- 30,000 to 80,000 CFM
- 250 600 kW
- Custom physical sizing / configurations
- iCOM control features

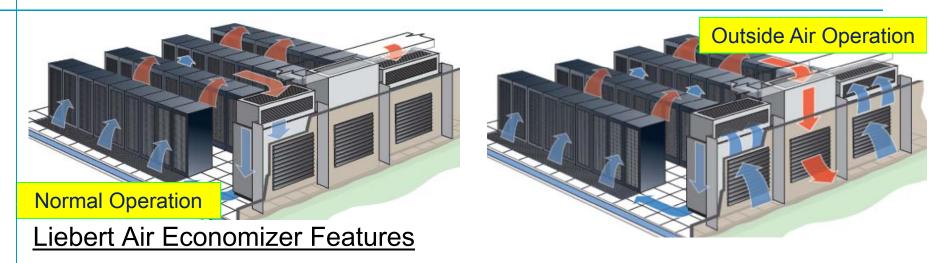




## Liebert Custom Air Handling Solutions Liebert CWC Chilled Water Air Handler

- Custom capacity and footprint configurations available from 200 – 600+ kW (25,000 - 80,000+ cfm)
  - Downflow, upflow or horizontal (fan array) airflow configurations
  - EC or direct drive w/ VFD fan options
  - Fans located under raised floor or in unit
  - Outside air economizer options

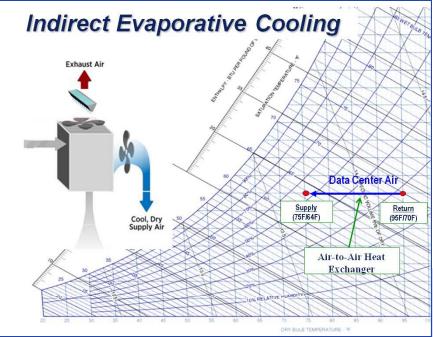
- Multiple filtration options
- Multiple casing materials available
- Indoor or outdoor construction available



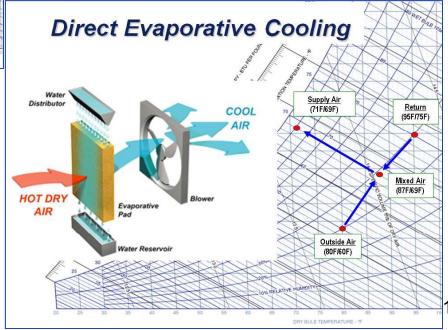






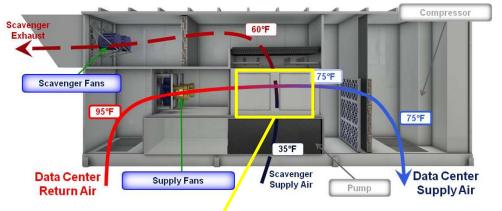


# Liebert Air Economizer System available on all Liebert DS and CW units



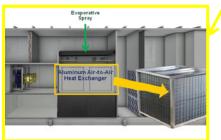

- Integrated economizer dampers with the cooling unit iCOM controller
  - 3 Stages of Cooling 100% Outside Air, Mixed Outside Air & Cooling, 100% Cooling
  - Air Enthalpy operation with variable capacity cooling
- Sensors T/H Outdoor Air, Return Air, Supply air
- Restricted airflow switch to detect clogged OA filters or other restrictions
- In economizer mode, unit humidification and dehumidification are inhibited
- Disable mode for emergency shut down
- Control menu to tune settings and monitor operations
- Custom operation and range capability



## **Evaporative Cooling Applications**





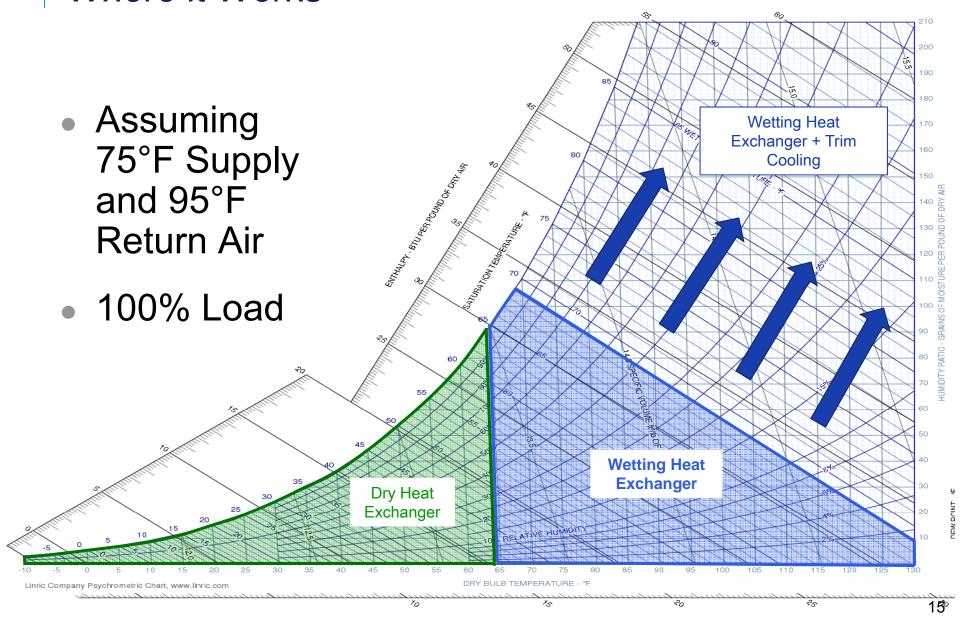




## Liebert EVI Indirect Evaporative Air Handler

- Capacities from 150 400+ kW with DX or CW trim
- PUE <1.20 with No Outside Air</li>
- Performance based on climate and Operating Temperatures
- Potential for lower Max kW
- Higher Tier applications require on site water storage or larger DX/CW

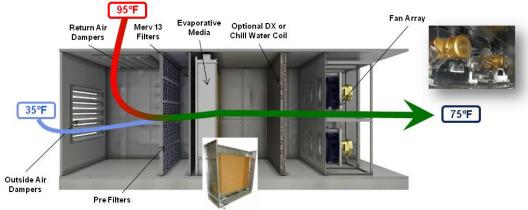


| Season      | Cooling<br>Mode | Dry<br>Bulb<br>Temp<br>(°F) | Wet<br>Bulb<br>Temp<br>(°F) | Gallon<br>s Per<br>Hour | Cooling<br>PUE |
|-------------|-----------------|-----------------------------|-----------------------------|-------------------------|----------------|
| Winter      | Dry             | 35                          | -                           | -                       | 1.10           |
| Spring/Fall | Wet             | 68                          | 57                          | 143                     | 1.14           |
| Summer      | Wet<br>w/ DX    | 90                          | 75                          | 178                     | 1.21           |



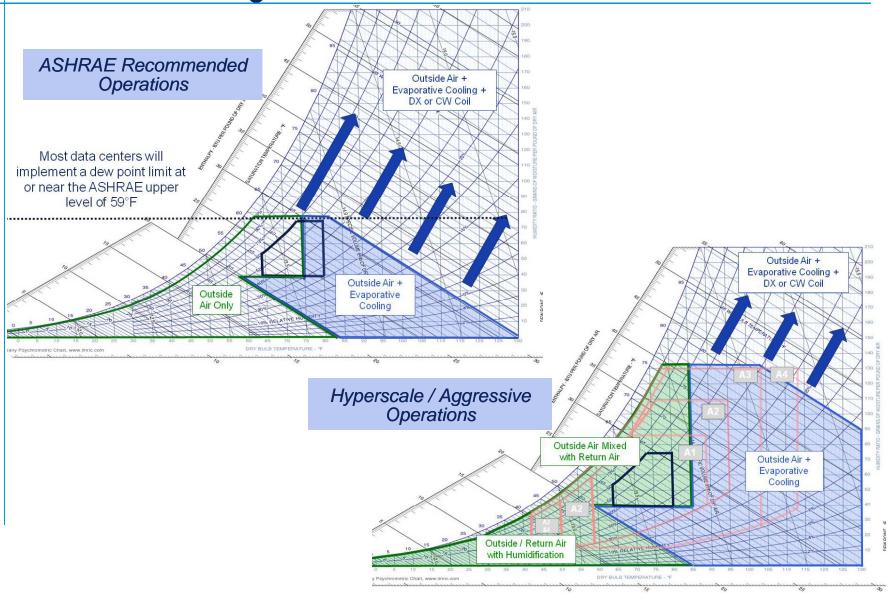






## Indirect Evaporative Cooling

Where it Works




## Liebert EVD Direct Evaporative Air Handler

- Capacities from 150 600 kW with DX or CW trim
- PUE <1.10 requiring Outside Air (actual performance based on climate)</li>
- Potential higher humidity and operating temperatures
- Lower Max kW
- Typically used in lower Tier applications





# Direct Evaporative Cooling Customers Range – Where it works



# Liebert Evaporative Air Handlers Customization Options

- Areas of Customization include:
  - Capacity and physical dimensions
  - Airflow supply & discharge
  - EC or direct drive w/ VFD fans arranged as single or fan arrays

## **Liebert EVI Indirect Evaporative Air Handler**

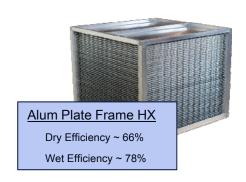
- Wet/Dry efficiency, static pressure drop and size of heat exchanger
- Temperature to wet the heat exchanger



- Supplemental or full cooling options using chilled water or DX
- Number and type of filters
- Unit casing materials

## Liebert EVD Direct Evaporative Air Handler

- Efficiency of media and the use of bypass dampers
- Exhaust air integration




Robust 3D design tools allowing for quick custom designs, component performance comparisons and pricing options

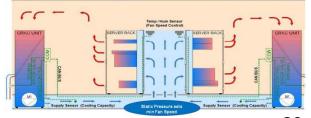
# Emerson Network Power Liebert Custom Air Handling Solutions

- High quality construction
  - 2" foam-injected walls, doors & flooring (R-12 value)
    - Minimal deflection and leakage and energy loss
    - High durability and strength with reduced sound transmission
  - Removable panel design for easy service or component access
  - Options for high R-value, lower sound, corrosive environmental coatings and finish
- EVI (Indirect) Aluminum heat exchanger
  - Higher Efficiency Dry +32% to 65%, Wet + 5%
  - Durable, will not break or crack (vs PVC / Polymer) and can be power washed
- Variable Capacity
  - EC and Direct Drive Fans with VFD
  - Variable Speed and Digital Compressors
- Multi Stage Direct Evaporative Media







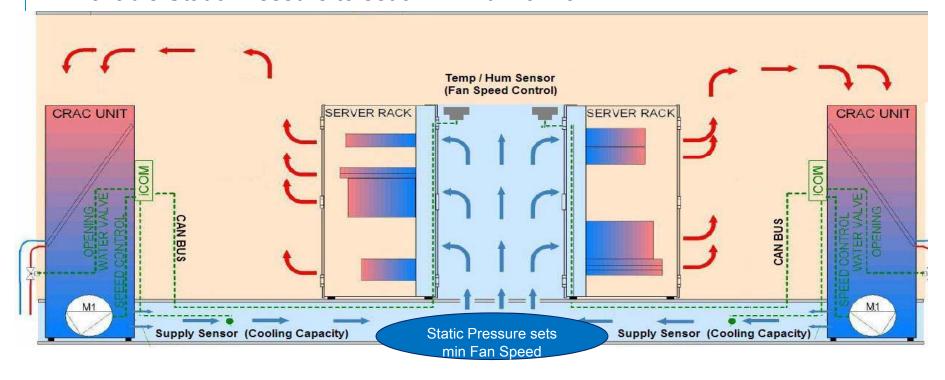

### Liebert iCOM Controls

### **Datacenter Controls**

- Global platform with proven and robust routines
- Choice of Control Strategies
  - Return Air, Static Pressure Control, or Supply Air
  - Optimized Aisle™
    - For Cold Aisle, Hot Aisle Containment or Overhead Distribution
  - Auto Tuning PID adjusting gain settings
- Multi-unit teamwork
  - Fan speed coordination to minimize energy usage
  - Lead lag and cascade
  - Predetermined Sequence of Operation
- Trellis Ready Advanced Applications
  - Remote service management
  - Wireless sensors fully integrated with controls
  - Integrated flow/capacity, kW and pressure sensors
- Simple BMS Integration Custom mapping protocols



- 10-30% Better Efficiency
- Availability approaching 100%
- 10-20% Lower Deployment Costs
- Powerful Insight for Ongoing Improvement




## Liebert iCOM<sup>TM</sup> Optimized Aisle<sup>TM</sup>

- Optimized Aisle mode manages air flow and cooling capacity independently in cold aisle config
- Optimized Aisle is a server centric solution focused on the inlet temperature to the servers
- Adjusts to server utilization, equipment add/changes and other outside variables
- Adapts from no to end/full containment
- Available Static Pressure to set a minimum airflow

#### **Delivers**

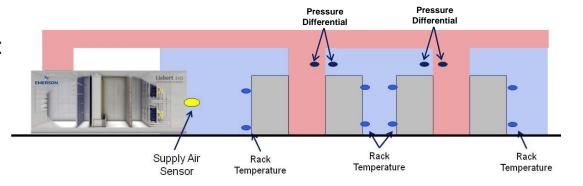
- Reliable IT operation
- Cooling Efficiency
- Lowest Fan Power
- Highest return air temperature for the best Cooling unit performance
- Thermal Mapping

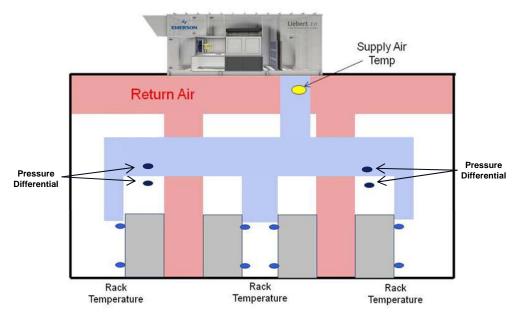


## Liebert iCOM<sup>TM</sup> Optimized Aisle<sup>TM</sup> Hot Aisle Containment and Overhead Distribution

### Same proven algorithm applied to non-cold aisle deployments

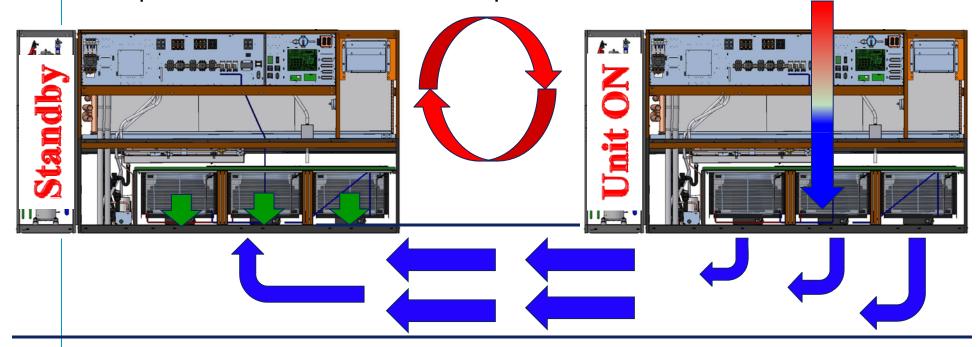
Airflow controlled through the differential pressure between:


Hot Aisle Containment

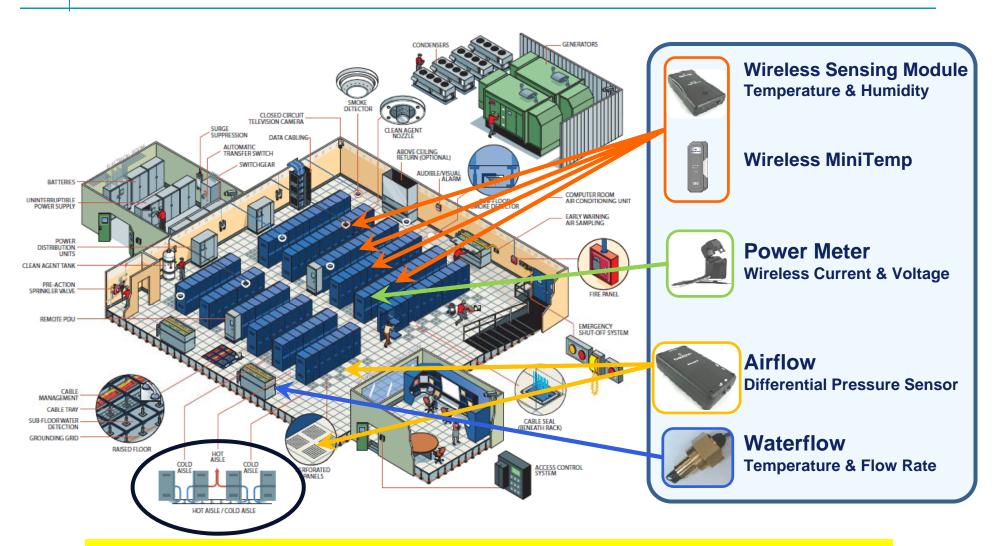

Hot aisle and Cold aisle

**Overhead Distribution** 

Supply duct to Room


- Supply air temperature maintains cooling capacity independently
- Monitor cold aisle temperatures for fan speed override
- Fan speed operates in parallel with other units

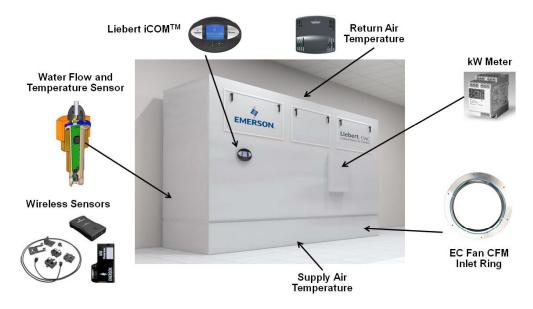





### Energy Efficiency – Virtual Damper

- Fans rotate at low speed to prevent air flow through unit
  - Adjustable based on application
- NO pressure drop during unit operation
- NO upfront cost of mechanical dampers




### Data Center Platform Landscape Launching Multiple Sensors in F'13



Building Intelligence around Performance, Capacity, and Diagnostics to make the right planning decisions and support SLAs

### DCIM - Trellis Installed Intelligent Sensors

 Trellis intelligent sensors provide insight to optimize efficiency and capacity with iCOM controls



### Instrumentation options provide

- Electrical power consumption
- Airflow
- Gross cooling capacity (ex CW)
- Delivered Net Sensible capacity
- Remaining Capacity
- Predictive Diagnostics

# Custom Controls Compared to Liebert iCOM Solution

#### **Unit Control**

#### **Basic Unit Operation**

- Fan operation
- DX operation / Chilled Water valve control / Media wetting
- Damper Position
- Supply or return air control
- Generic sequence of operation
- Basic sensor deployment

#### **Site Level Control**

#### **Required BMS Integration**

- Data center sensors
- Unit control points
- Multi-unit coordination Fan Speed, Standby rotation, Lead/Lag operation, Cascade
- Failover procedures
- BMS control screens and points

### **Outcome**

- High total implementation cost
- Greater system complexity
- Lengthy deployment with limited field testing and validation
- Significant risk to project timeline
- Generic, one-off controls with expensive / inconsistent long term support

#### **Liebert iCOM Solution**

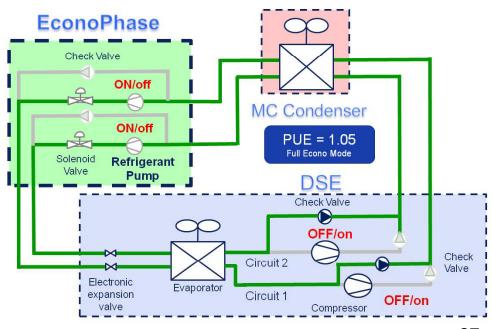
- Coordination with data center operation
- Optimized unit performance
- Predefined configurable sequence of operation
- Factory equipped sensors
- Defined staging and valve routines

- Predefined configurable failover routines
- Built-in multi-unit Teamwork
- Optimized Aisle Operation
- Sensor connection back to units
- Sharing of sensor data between units
- Wireless rack sensor integration
- Simple BMS integration

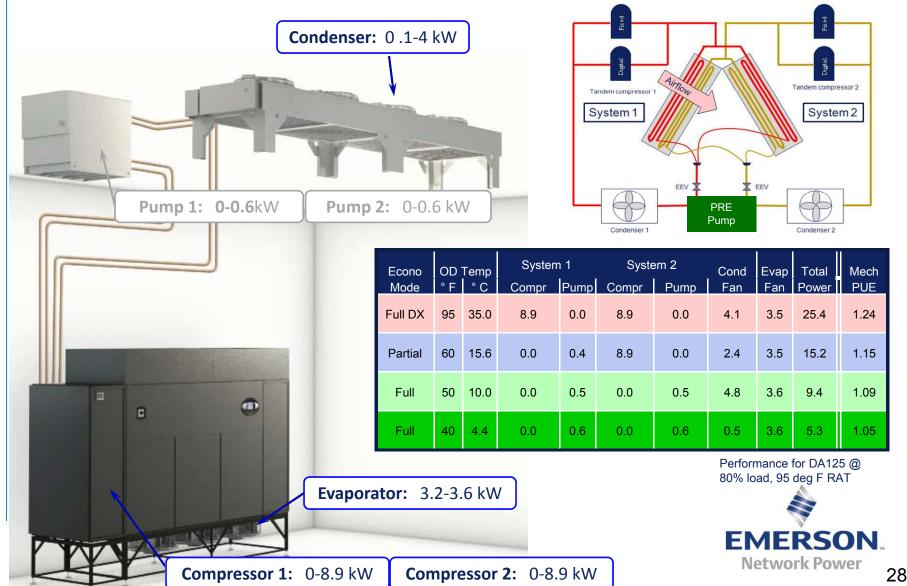
- Low total implementation cost
- Algorithms developed specifically for data centers
- Extensive reliability testing and robust algorithms
- Reduced system complexity
- Quick deployment
- Limited risk

### Liebert DSE World's Most Efficient DX System

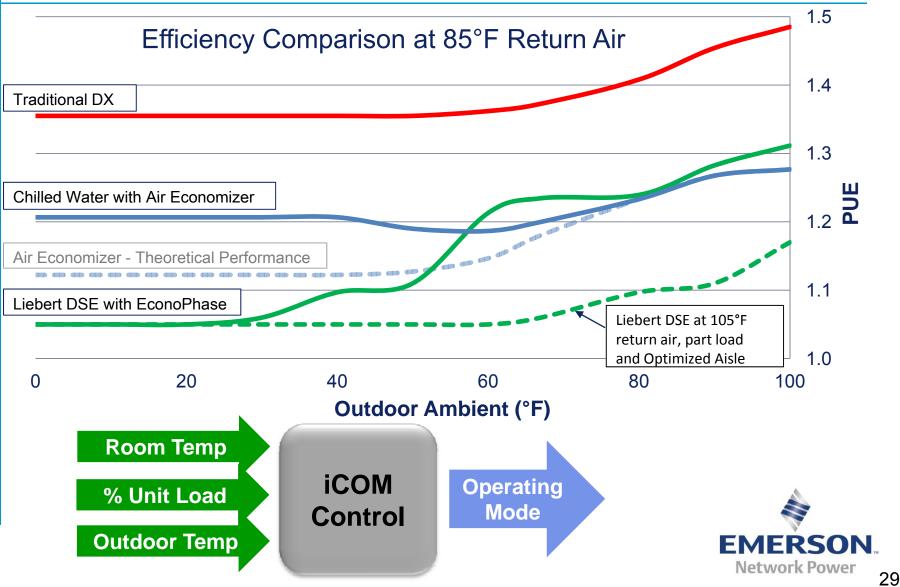
- Efficiencies of 1.5x ASHRAE standards with annual PUE<1.2</li>
- Pumped Refrigerant Economizer (EconoPhase) mode with operation down to 1.05 PUE



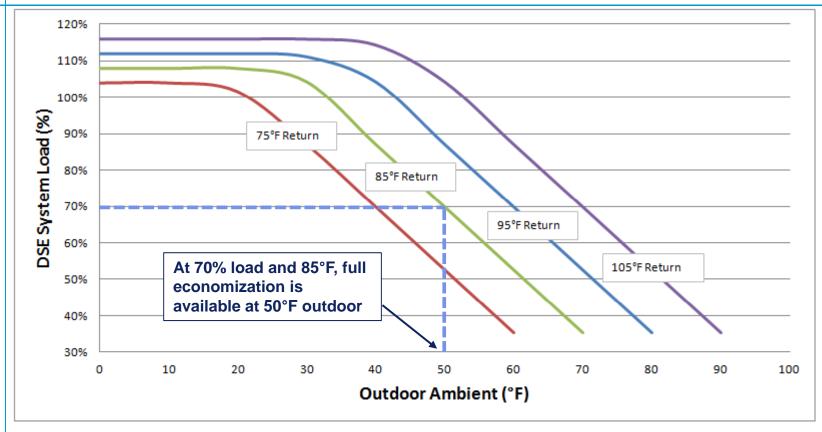

- Standard iCOM control with Optimized Aisle
- Capacities of 80 to 165 kW
- Ideal for sites up to 3 MW
- Simple and reliable part and full economizer mode




| Mode             | OD<br>Temp | Total<br>Power |  |
|------------------|------------|----------------|--|
| Full<br>DX       | 95 °F      | 24.1 kw        |  |
| Partial<br>Econo | 65°F       | 15.1 kW        |  |
| Full<br>Econo    | 25°F       | 3.7 kW         |  |


For 125 kW of Cooling




### Most Efficient System: DX, Partial and Full Econo Operation Modes



## Unmatched Efficiency with Hassle-Free Economization



### Most Efficient System: Liebert EconoPhase 100% Free-Cooling Capability

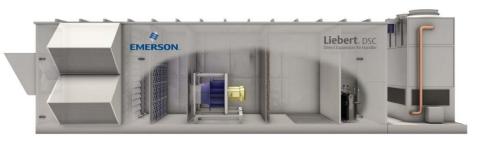


Annual free-cooling hours increase at higher return air conditions and lower unit loads:

| Percentage of Annual Hours with 100% Free-Cooling Available |                 |                 |  |  |  |
|-------------------------------------------------------------|-----------------|-----------------|--|--|--|
| Location                                                    | 85°F Return Air | 95°F Return Air |  |  |  |
| San Francisco, CA                                           | 42%             | 70%             |  |  |  |
| Philadelphia, PA                                            | 32%             | 48%             |  |  |  |
| Charlotte, NC                                               | 36%             | 45%             |  |  |  |



# Down Flow Front Discharge Configuration


- Primarily used for battery, mechanical, or electrical rooms
- Full airflow rating compared to bottom discharge with fans in the unit
- No Floor stand required / additional front grill available
- Disconnect and Controls at normal height to meet NEC and User interface requirements
- Available in Chilled Water (CW) and DX (DS/DSE) product lines



## Liebert Custom Air Handling Solutions Liebert DSC Direct Expansion Air Handler

- For customers seeking low installation costs and zero footprint in or along side the data center
- Unit capacities ranging from 150 600 kW per unit
- Liebert DSC Direct Expansion Air Handler configurations combine premium quality construction with high efficiency options
  - Outside air economizer with integrated by pass dampers
  - Variable speed or digital compressors with optional evaporative condenser
- Low noise options available





## Liebert Data Center Thermal Management Solutions

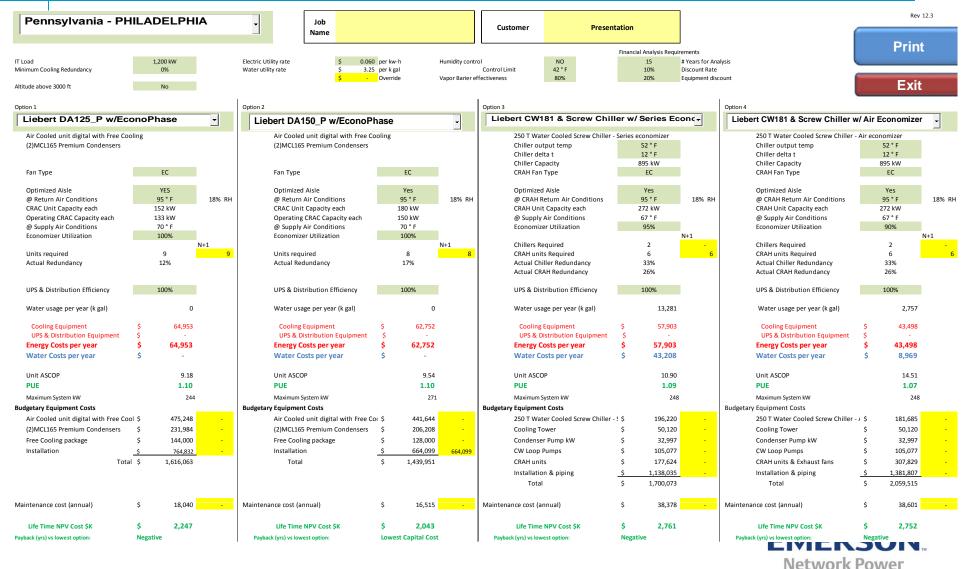
|                      | Liebert DSE           | Liebert CW<br>Chilled Water Unit | Liebert CWC<br>Chill Water AHU | Liebert EVI<br>Indirect Evap AHU | Liebert EVD<br>Direct Evap AHU | Liebert DSC Direct<br>Expansion AHU |
|----------------------|-----------------------|----------------------------------|--------------------------------|----------------------------------|--------------------------------|-------------------------------------|
| Financial Attributes |                       |                                  |                                |                                  |                                |                                     |
| Equipment Cost       | $\checkmark$          |                                  |                                |                                  | $\checkmark$                   |                                     |
| Efficiency           | <b>/</b> +            |                                  |                                | <b>/</b> +                       | <b>/</b> +                     | $\sim$                              |
| Availability         | $\checkmark$          | $\checkmark$                     | $\checkmark$                   | $\checkmark$                     | <b>√</b>                       | $\checkmark$                        |
| Install Cost         |                       |                                  |                                | <b>√</b>                         | <b>√</b>                       | $\checkmark$                        |
| Infrastructure Cost  |                       |                                  |                                |                                  |                                |                                     |
| Operating Conditions | ASHRAE<br>Recommended | ASHRAE<br>Recommended            | ASHRAE<br>Recommended          | ASHRAE<br>Recommended            | ASHRAE Allowable               | ASHRAE<br>Recommended               |
| Outside Air          | None                  | Optional                         | Optional                       | None                             | Required                       | Optional                            |
| Data Center Location |                       |                                  |                                | Best in Dry<br>Climate           | Best in Dry<br>Climate         |                                     |
| Low Water Costs      | $\checkmark$          |                                  |                                |                                  |                                | $\checkmark$                        |
| Location             |                       |                                  |                                |                                  |                                |                                     |
| Roof                 |                       |                                  | ,                              | <b>V</b>                         | <b>-</b>                       | $\checkmark$                        |
| External Side        |                       |                                  |                                |                                  | <b>-</b>                       |                                     |
| Gallery              | <b>-</b>              | _                                | <b>-</b>                       |                                  | <b>-</b>                       |                                     |
| DC Perimeter         | <b>V</b>              |                                  | <b>V</b>                       |                                  |                                |                                     |
| Modular System       | <b>√</b>              | <b>√</b>                         |                                | <b>—</b>                         | <b>—</b>                       | <b>√</b>                            |

# Emerson Network Power Service and Support

### Our Message → Service Value Proposition

- Nationwide service through regionally based Factory Trained Technicians
- Guaranteed 4 hours response time for contract customers
- 24-hour customer and tech support
  - Local Parts Stocking
- Remote Monitoring delivered by data center experts
- Energy Optimization Services
  - CFD modeling services
  - Energy Efficiency Assessments
  - Reduce energy costs 15-40%




- Availability approaching 100%
- Lower Service& MaintenanceCosts
- 15% Energy Savings



## Designing in These Technologies

- Liebert Energy and TCO tools
- Customer Operating Requirements
- Designs for high efficiency
  - Return air / Supply air temperatures
  - Maximize economization hours
- Redundancy / Cautions
- Other factors
  - Max KW rating
  - Utility ride through

# Liebert Energy & TCO Tool – Energy and Performance Calculation for Any System Type



#### Pennsylvania - PHILADELPHIA

IT Load 1,200 kW Electric Utility rate
Minimum Cooling Redundancy 0% Water utility rate

Altitude above 3000 ft No

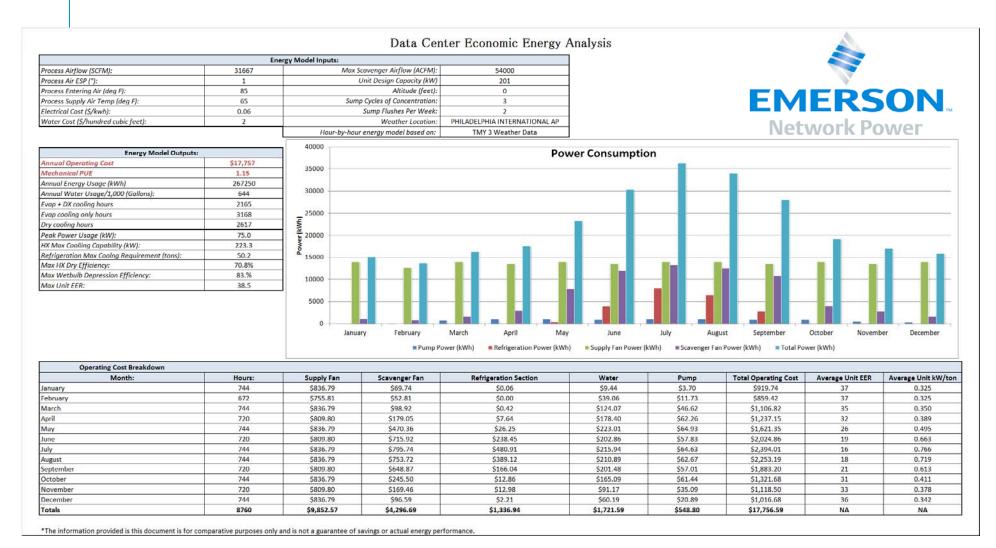
# \$ 0.060 per kw-h Humidity cont \$ 3.25 per k gal

Override

# Energy//TCO Report

#### Option 2

| Option 2                                             |                              |                  |        |
|------------------------------------------------------|------------------------------|------------------|--------|
| Liebert DA150_P w/Eco                                | ono                          | Phase            | -      |
| Air Cooled unit digital with Free Coo                | oling                        |                  |        |
| (2)MCL165 Premium Condensers                         |                              |                  |        |
| Fan Type                                             |                              | EC               |        |
| ,,                                                   |                              |                  |        |
| Optimized Aisle                                      |                              | YES              |        |
| @ Return Air Conditions                              |                              | 95 ° F           | 18% RF |
| CRAC Unit Capacity each Operating CRAC Capacity each |                              | 180 kW<br>150 kW |        |
| @ Supply Air Conditions                              |                              | 70 ° F           |        |
| Economizer Utilization                               |                              | 100%             |        |
|                                                      |                              |                  | N+1    |
| Units required                                       |                              | 8                | 8      |
| Actual Redundancy                                    |                              | 17%              |        |
| UPS & Distribution Efficiency                        |                              | 100%             | l      |
| Water usage per year (k gal)                         |                              | 0                |        |
| Cooling Equipment                                    | \$                           | 62,752           |        |
| <b>UPS &amp; Distribution Equipment</b>              | \$                           | -                |        |
| Energy Costs per year                                | \$<br><b>\$</b><br><b>\$</b> | 62,752           |        |
| Water Costs per year                                 | \$                           | -                |        |
| Unit ASCOP                                           |                              | 9.54             |        |
| PUE                                                  |                              | 1.10             |        |
| Maximum System kW                                    |                              | 271              |        |
| Budgetary Equipment Costs                            |                              |                  |        |
| Air Cooled unit digital with Free Coo                | ol\$                         | 441,644          | -      |
| (2)MCL165 Premium Condensers                         | \$                           | 206,208          | _      |
| Free Cooling package                                 | \$                           | 128,000          | _      |
| Installation                                         | \$                           | 699,052          | _      |
| Tota                                                 | 1 \$                         | 1,474,904        | _      |
|                                                      |                              |                  |        |
| Maintenance cost (annual)                            | \$                           | 16,515           | -      |
| Life Time NPV Cost \$K                               | \$                           | 2,078            |        |
| Payback (yrs) vs lowest option:                      | Low                          | est Capital Cost |        |


## Page 2 Details by Bin

Vapor Barier €

| Dry Bulb Bin Data       |         |                |     |                |          |        |
|-------------------------|---------|----------------|-----|----------------|----------|--------|
| Temp bins               | below 5 | 5-9            |     | 90-94          | above 95 |        |
| Dry bulb hrs            | 9       | 17             |     | 88             | 18       |        |
| WB @ DB bin             | 6       | 6              |     | 75             | 75       |        |
| Ave Dew point           | 2       | 2              |     | 62             | 62       |        |
| Option 1                |         | 9 Liebert DA12 | 25_ | P w/EconoPhase |          | Total  |
| System kW load          |         |                |     |                |          | MW-H   |
| Compressor kW           | 0.0     | 0.0            |     | 178.0          | 187.2    | 718.3  |
| Evap Fan kW             | 22.7    | 22.7           |     | 20.2           | 20.2     | 186.0  |
| Condenser kW            | 0.3     | 0.3            |     | 36.6           | 36.6     | 122.5  |
| Humidifier kW           | 0.0     | 0.0            |     | 0.0            | 0.0      | 0.0    |
| Free cooling pump kW    | 12.0    | 12.0           |     | 0.0            | 0.0      | 55.8   |
| UPS & Distribution      | 0.0     | 0.0            |     | 0.0            | 0.0      | 0.0    |
| Total power consumed kW | 35.1    | 35.1           |     | 234.7          | 243.9    | 1082.5 |
| Energy consumed MW-Hr   | 0.3     | 0.6            |     | 20.7           | 4.4      |        |
| Option 2                |         | 8 Liebert DA15 | 50_ | P w/EconoPhase |          |        |
| System kW load          |         |                |     |                |          |        |
| Compressor kW           | 0.0     | 0.0            |     | 192.8          | 195.2    | 584.2  |
| Evap Fan kW             | 27.4    | 27.4           |     | 27.4           | 27.4     | 240.3  |
| Condenser kW            | 0.1     | 0.1            |     | 48.0           | 48.0     | 151.5  |
| Humidifier kW           | 0.0     | 0.0            |     | 0.0            | 0.0      | 0.0    |
| Free cooling pump kW    | 12.0    | 12.0           | -   | 0.0            | 0.0      | 69.9   |
| UPS & Distribution      | 0.0     | 0.0            |     | 0.0            | 0.0      | 0.0    |
| Total power consumed kW | 39.6    | 39.6           |     | 268.3          | 270.6    | 1045.9 |
| Energy consumed MW-Hr   | 0.4     | 0.7            |     | 23.6           | 4.9      |        |

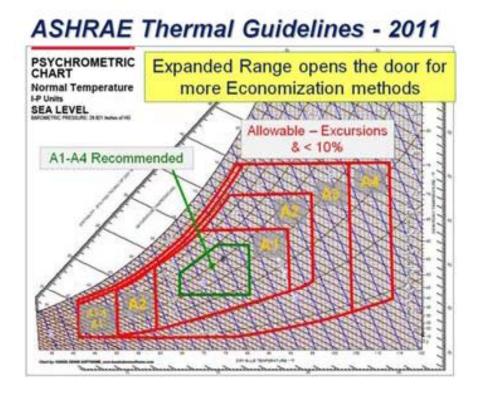


## Indirect Evaporative Energy Model - EVI



# Liebert TCO / Energy Performance Tools for Direct & Indirect Evap Coolers




#### Reference Models for Custom Air Handlers

- 35,000, 42,000 and 48,000 CFM
- Raised floor / non-raised floor
- Downflow, Horizontal and Vertical



## **Customer Requirements**

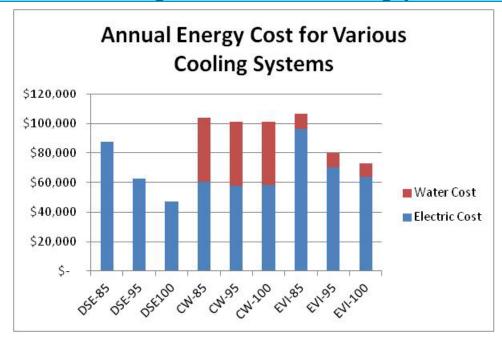
- Supply Temperature
   Operating point will drive
   RAT (~20 to 25 deg dT depending on load)
- Build plans and IT deployment plans – modular builds
- Tier requirements
- Outside Air acceptability
- Controls and Monitoring



# Benefits of Higher Return Air Temperatures

- Capital
  - Cooling Equipment
  - Electrical Gear
- Operating Expense
  - Energy
  - Maintenance

 Control is on the Supply – a 95 deg F Return Air Temperature is about 70 deg F supply but depends on unit loading

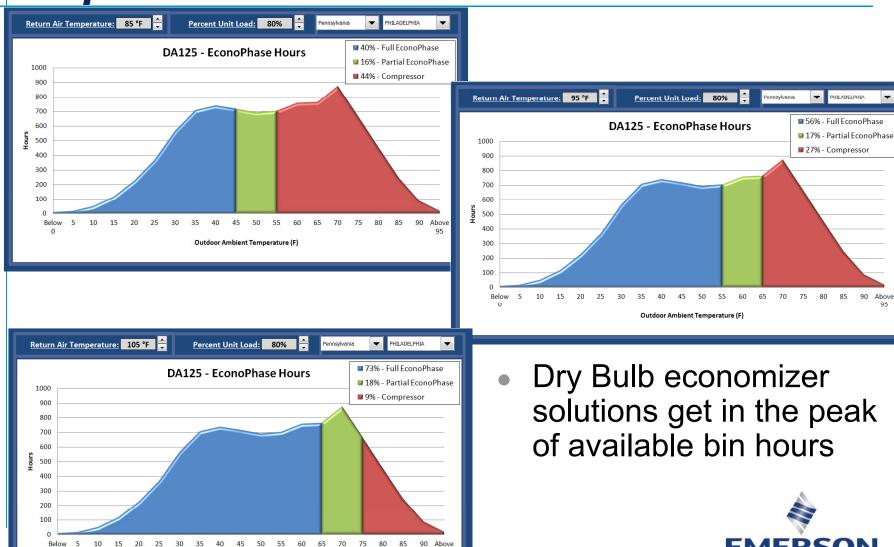

| Liebert D  | SE (N+2)    | <u> </u> |              |            |            |           |    |              |             |           |               |      |          |
|------------|-------------|----------|--------------|------------|------------|-----------|----|--------------|-------------|-----------|---------------|------|----------|
|            | Performance |          |              |            |            |           | Ca | pital        |             | Operating | ј Ехр         | ense |          |
|            |             | Capacity | Unit         | Hours of   | Mech       | Max       |    | Cooling      | Electrical  |           | Annual        | A    | Annual   |
|            |             | per unit | <u>ASCOP</u> | Econo Mode | <u>PUE</u> | <u>kw</u> |    | <u>Units</u> | <u>Gear</u> | •         | <u>Energy</u> | Mai  | ntenance |
| RAT'       | 85° F       | 154      | 5.78         | 2791       | 1.17       | 397       |    | 11           |             | \$        | 113,948       | \$   | 22,708   |
|            | 95° F       | 180      | 8.71         | 4196       | 1.11       | 301       |    | 10           |             | \$        | 74,807        | \$   | 20,644   |
| Imp        | provement   | 17%      | 51%          | 50%        | -5%        | -24%      |    | -9%          | -24%        |           | -34%          |      | -9%      |
| Oper Redun | dant Units  | 180      | 10.34        | 4898       | 1.09       | 299       |    | 10           |             | \$        | 61,639        | \$   | 20,644   |
| Imp        | provement   |          | 19%          | 17%        | -2%        | -1%       |    |              |             |           | -18%          |      |          |
| Tota       | al Benefits | 17%      | 79%          | 75%        | -7%        | -25%      |    | -9%          | -25%        |           | -46%          |      | -9%      |

example: Location - Philadelphia

Critical load 1,295 kW

Electric \$0.06 / kwh

## **Cooling Technology Solutions**

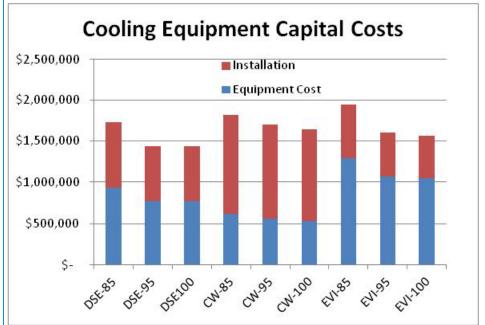


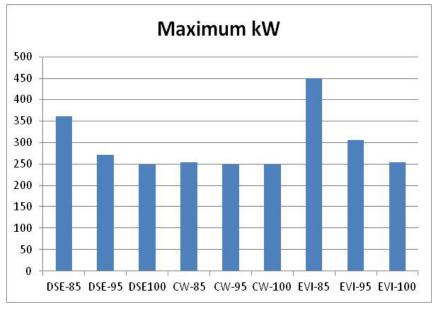

- Location Philadelphia
- Critical load 1,200kW
- RAT of 85, 95,100
- Electric \$0.06 / kwh,
- Water \$3.25 / 1000 gal
- LCWT 52 deg F / 12 dT
- Chiller series economizer
- To get the advantages of higher RAT, Chilled water systems need to raise the LCWT
- Indirect Evaporative systems are impacted by the higher supply air ESP (~1")



## **Bin Hours Economization** Representation for Liebert DSE

Outdoor Ambient Temperature (F)





solutions get in the peak of available bin hours



PHILADELPHIA

## **Capital Costs**





- Cooling Capital
  - Driven by installation costs
- Max kW impacts Generator sizing and switch gear
- Consider Water storage requirements for ride EMER through

## Impact of Designing for Higher RAT Temperatures but Not Operating

- Reduced Redundancy
- Higher Operating Costs
- Higher Max kW

|                        | <u>]</u> | <u>Design</u> | 0  | Operating at lower |    |              |  |  |
|------------------------|----------|---------------|----|--------------------|----|--------------|--|--|
| IT load (kW)           |          | <u>1,200</u>  |    | 1,000              |    | <u>1,200</u> |  |  |
| RAT/SAT                |          | 100 / 74      |    | 85 / 64            |    | 85/60        |  |  |
| N+ x                   |          | 1             |    | 1.5                |    | 0.24         |  |  |
| # units                |          | 8             |    | 8                  |    | 8            |  |  |
| Capacity per unit (kw) |          | 193           |    | 154                |    | 154          |  |  |
| Electric Cost          | \$       | 47,497        | \$ | 74,723             | \$ | 111,301      |  |  |
| Water Cost             | \$       | -             | \$ | -                  | \$ | -            |  |  |
| Total                  | \$       | 47,497        | \$ | 74,723             | \$ | 111,301      |  |  |
| PUE                    |          | 1.07          |    | 1.14               |    | 1.18         |  |  |
| Max Kw                 |          | 249           |    | 302                |    | 369          |  |  |



## Data Center Design and Control

- Key to achieving and maintaining design objectives
  - Control
    - iCOM controls to the Supply air but with Optimized Aisle maintains the maximum Return Air Temperature
    - Maintains capacity for 100% Availability
  - Variable capacity (cooling and airflow)
  - Measuring and Monitoring a tighter environment
  - Some level of containment



## Building for Modularity / Staged Build

|                | DA150 P     | CW (Centrifugal) | Indirect Evap   |
|----------------|-------------|------------------|-----------------|
| 5000 kW        |             |                  |                 |
| Capital        | \$6,119,794 | \$8,224,292      | \$5,816,571     |
| Redundancy     | N+6         | N+5 (CRAH)       | N+2             |
| Energy         |             |                  |                 |
| Electric       | \$254,097   | \$216,239        | \$323,470       |
| Water          | <u>\$0</u>  | <u>\$180,033</u> | <u>\$39,411</u> |
| Total          | \$254,097   | \$396,272        | \$362,881       |
| <u>1200 kW</u> |             |                  |                 |
| Capital        | \$1,474,904 | \$4,928,282      | \$1,605,000     |
| Redundancy     | N+1         | N+1 (CRAH)       | N+1             |
| Energy         |             |                  |                 |
| Electric       | \$62,752    | \$113,333        | \$70,036        |
| Water          | <u>\$0</u>  | <u>\$43,208</u>  | <u>\$9,755</u>  |
| Total          | \$62,752    | \$156,541        | \$79,791        |

 The Energy / TCO tool can run the different scenarios

## Other Design Factors

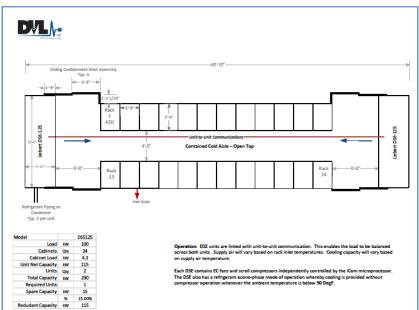
### Liebert DSE

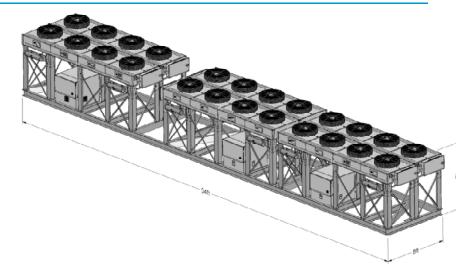
- Simple, low maintenance and all Controls can be self contained with iCOM and does not required a separate BMS
- Generally requires roof space for condensers
- Works best in climates with more than 35% of the dry bulb bin hours temperatures at about 35 deg F below the RAT

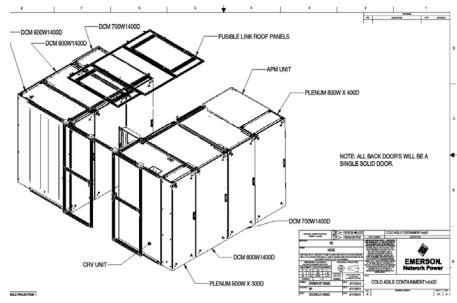
### Chilled Water

- Generally requires a BMS system for the chiller plant. Added cost?
- Economizer hours driven by adjusting the Leaving CW temperature
- Cost of water and treatment

## Indirect Evaporative

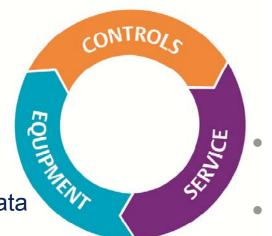

- Cost of water and treatment/ Availability
- Does not take IT space can be on the Roof or Side of building
- Cooling support rooms may require other cooling solutions
- Best in dry climates and higher RAT applications
- Installation requires duct work mostly operate in HAC config


## **Other Considerations**


- Installation costs
  - As energy cost come down, the first cost is the major driver of the TCO
  - Finding creative ways to bring down the installation costs – factory built modules – eliminate on site uncertainties
- SCCR
- White space use
  - Cooling equipment in Galleries
  - External to the building
- BMS / Monitoring
- Controlling to a Supply Air Temperature means to design to the Return Air Temperature

# **Creative Solutions**










# Liebert Thermal Management Solutions Maximizing Customer Value

- iCOM Controls
  - Reliable to meet all SLAs
  - Ensures maximum efficiency all the time
  - Intelligence for managing change and reliability



- Breadth of solutions for all Data Centers from small to large
- Efficiency options with Economization with PUFs from 1.05 to 1.25
- Flexibility with Custom or Configured Solutions

- Tools for selecting the right solution
- Unmatched Service and Support for all products and applications



## Summary

- Thermal management customer requirements are evolving
- Liebert's new solutions for large data centers are the broadest offering to meet the application requirement with:
  - New and expanded solutions
  - Controls and Monitoring
  - Energy and TCO tools to help select the best solution
- Data Center design considerations using these solutions
  - Optimizing for Capital and Efficiency
  - Controlling to deliver on the design
  - Other considerations
- Questions

# Thank You

#### Website for More Information

Liebert DSE - <a href="http://www.emersonnetworkpower.com/en-US/Products/PrecisionCooling/LargeRoomCooling/Pages/LiebertDSEPrecisionCoolingSystem-125kw.aspx">http://www.emersonnetworkpower.com/en-US/Products/PrecisionCooling/LargeRoomCooling/Pages/LiebertDSEPrecisionCoolingSystem-125kw.aspx</a>

Liebert CW - <a href="http://www.emersonnetworkpower.com/en-us/Products/PrecisionCooling/LargeRoomCooling/Pages/LiebertCWChilledWater-basedPrecisionCooling26-181kW.aspx">http://www.emersonnetworkpower.com/en-us/Products/PrecisionCooling/LargeRoomCooling/Pages/LiebertCWChilledWater-basedPrecisionCooling26-181kW.aspx</a>

Liebert Air Handling Solutions - <a href="http://www.emersonnetworkpower.com/en-us/Products/PrecisionCooling/air handlers/Pages/Liebert Custom Air Handling Units.aspx">http://www.emersonnetworkpower.com/en-us/Products/PrecisionCooling/air handlers/Pages/Liebert Custom Air Handling Units.aspx</a>



## Liebert DSE Technical Information

#### Technical data

| Technical data    |                                |       |       |       |       |  |  |  |  |
|-------------------|--------------------------------|-------|-------|-------|-------|--|--|--|--|
|                   |                                | Model |       |       |       |  |  |  |  |
|                   |                                | DA080 | DA085 | DA125 | DA150 |  |  |  |  |
|                   | Total Capacity kW (net)        | 88    | 100   | 146   | 170   |  |  |  |  |
| 95 °F DB, 52.3 DP | Sensible Capacity kW (net)     | 84    | 94    | 146   | 170   |  |  |  |  |
| 95 F DB, 52.3 DP  | Full-load SCOP @ 95 °F ambient | 3.2   | 3.1   | 3.8   | 3.2   |  |  |  |  |
|                   | SCOP @ 35 °F ambient (kW/kW)*  | 10.5  | 10.1  | 17.5  | 13.0  |  |  |  |  |
|                   | Total Capacity kW (net)        | 85    | 92    | 130   | 153   |  |  |  |  |
| 85 °F DB, 52.3 DP | Sensible Capacity kW (net)     | 77    | 83    | 130   | 153   |  |  |  |  |
|                   | Full-load SCOP @ 95 °F ambient | 3     | 2.7   | 3.4   | 2.9   |  |  |  |  |
|                   | SCOP @ 35 °F ambient (kW/kW)*  | 9.1   | 8.7   | 12.2  | 12.0  |  |  |  |  |

<sup>0</sup> 

Note: Capacity data is rated and factory-certified per ASHRAE 127-2012 with a 5% tolerance

#### **Basic dimensions**

| Model | Length (A) | Width (B) | Height (C) |
|-------|------------|-----------|------------|
| DA080 | 100"       | 35"       | 76"        |
| DA085 | 100"       | 35"       | 76"        |
| DA125 | 144"       | 47"       | 76"*       |
| DA150 | 144"       | 47"       | 76"*       |

<sup>\*</sup>Add minimum 18" height for separate filter plenum, plus floorstand height

### **Condenser Line Lengths**

- Linear length 300 ft (92 m)
- Vertical lift \* - 60 ft (18.5m)
- Equivalent length 450 ft (137 m)

<sup>\*</sup> Higher lifts consult Factory



<sup>\*</sup>Economizer mode operating at 100% of DX capacity

## Liebert Offering: Liebert HPC Chiller

Models: FG0052, FG0080, FB0110

Capacities: 50, 75, and 100 tons

Power Supply: 460/3/60

Glycol percentage: 10% - 50%

Ambient Temperatures: -20 °F to 110 °F

Water  $\Delta T$  Ranges: 8 – 14 °F

### Features:

Integral economizer, iCOM controls

R-410a with Copeland Scroll Compressors

• Low noise, EC condenser fans

Optional on-board pumps & water storage tank

Robust, continuous duty design

### Benefits:

- End-to-end solutions for SMB market with CRV, XDP, DCD
  - iCOM controls networked with indoor units for complete control
- Integrated economizing function to reduce compressor power consumption at low ambient conditions



FB0110 shown