Finding the right architecture for power protection in hospitals

by Emerson Network Power on 3/30/16 8:42 AM

Finding-the-right-architecture-for-power-protection-in-hospitals.jpg

If you’ve read the post about distributed and centralized bypass architectures, you’re probably evaluating the right architecture for a new datacenter, or maybe you’re re-designing the one you’re currently using. The decision is not easy and it will often impact the operation and performance of the power protection system in your datacenter or the connected loads. Unfortunately, in technology there is rarely a simple “yes – no” or black – white” answer, and this holds true for power distribution as well. Yet, in technology and science, there’s a “grey area”, in which the ‘right’ decision is strongly influenced by the specific context and case, and is dependent on many parameters. Luckily, there are paths to find the best solution as a trade-off between the multiple parameters involved.

If you’re considering the use of an Uninterruptible Power Supply (UPS), it means you are worried about the possibility of utility power failures and the associated downtime problems that follow. Given this, the selection of the appropriate configuration or architecture for power distribution is one of the first topics of discussion, and the use of a centralized, parallel, distributed, redundant, hot-standby or other configurations available, becomes an important part of it.  While there are numerous architectures to choose from, there are also several internal variables that will require your attention. Fortunately, a few elementary decisions will make the selection easier. Even if not all parameters can be matched, it’s important to at least begin the conversation and explore trade-offs and other considerations. Without trying to be exhaustive (which would require a dedicated white paper), you should consider at least the following:

a) Cost: more complex architectures will increase both your initial investment and your cost, not only at the initial design stage but during the entire life of your power system, especially with regards to efficiency. In other words, we could say that complex architectures will increase your TCO.

b) Availability and reliability: how reliable should your power system be? And what about single or multiple points of failure? Would you need any type of redundancy?

c) Plans for growth: Do you expect your power demand or capacity to increase in the future? Will you re-configure your load distribution?

d) Related to the previous point, but highlighted separately because of its importance for UPS is modularity. Do you need a modular solution for future expansion or redundancy?

e) Bypass architecture; an important point as explained in a separate post.

f) Need for monitoring of the complete UPS power system, also considering any shutdown of loads, and in combination with other systems like thermal management.

g) Service and maintenance: Once the initial investment in power protection has been made, please do not forget to keep it at optimum conditions. This maintenance at regular intervals has to be achieved through service contracts, check for spares availability if multiple types of UPS are used, capability to isolate a subset, or use of remote diagnostic and preventive monitoring services such as Emerson Network Power’s LIFE for maximum availability.

h) Profile of the loads; especially if you’re considering a few large loads or many “small” loads (perhaps distributed across several buildings or in a wide area such as a wind farm), autonomy required for each load, peak power demands, etc.

In addition, the decision is not only related to the internal requirements of the power systems, but it is also linked to the type of load or application to be protected, as requirements and decisions may vary depending on the application being industrial, education, government, banking, healthcare or data center. For example, an application where the loads are servers which manage printers in a bank, compared to a hospital where the power protection systems may manage several surgery rooms, are by no means the same. In fact, in the case of bank printers, in the worst case they can be shut down, while in the case of the surgery rooms, their shutdown is not an option unless for scheduled maintenance. This is because a non-scheduled shutdown of the medical equipment in a surgery room would have a serious impact on the people inside that room for a surgical operation.

Let’s take the hospital example further and consider a particular case. In order to do a quick exercise and simplify, we can use a scenario with several surgery rooms as a reference (for example 5 to 20 rooms, each one with a 5-10 kVA UPS for individual protection), plus a small data center (for example with 30 kVA power consumption) and finally, other critical installations in the facility (let’s assume 300 kVA for offices, laboratories, elevators, etc.).

In this scenario, initially, the architectures that could be envisaged as a first step are:

1. Fully distributed, and for simplicity’s sake, a hospital with 10 surgery rooms is assumed here with 10 kVA for each surgery room plus a centralized UPS (>330 kVA) for the remaining loads.

2. A fully redundant solution based on a centralized UPS protecting all the loads (this UPS being in a parallel redundant configuration). The power for any of these UPS would be 300 kVA + 30 kVA + (10 x 10 kVA).

3. An intermediate solution, referred to as “redundant hot standby”, so that this redundant UPS is sized only for the surgery rooms (10 surgery rooms x 10 kVA), and with a bypass line connected to the large centralized UPS (>430 kVA). This solution shows the advantage of a smaller capacity required for this redundant hot standby UPS.

Emerson Network Power has done several simulations based on typical scenarios as the one described above for a hospital, and considered the factors for optimization a), b), e) and h). Considering the parameters for optimization, the energy savings (power consumption and heat dissipation), initial investment (CAPEX) as well as the maintenance costs (OPEX), the solution based on the “redundant hot standby” seems to be the most convenient.
Moreover, the difference between architectures 1 and 3 is larger as far as quantity of surgery rooms or period for cost simulation (from 1 year up to 10 years).
This points us in the right direction in selecting the best distribution architecture for this application in hospitals and using these parameters for optimization. Clearly, it can be enriched using the other parameters shown in the sections above, or adapted to the particular case (quantity of surgery rooms, autonomy for each load, power demanded by CPD room, reliability, …) that could lead to a different choice, but globally, this redundant hot standby has resulted in a good trade-off.

As said at the beginning, there is no magic solution for the optimum selection, but we have sought to explore several guidelines and check points that will help drive you towards the best solution for your case. Of course, any additional variables and the reader’s experience are welcome and can only serve to enrich the discussion.

Read More

Topics: Data Center, PUE, energy, UPS, Efficiency, Thermal Management, DCIM, Uptime, sustainability, energy efficiency, preventative maintenance, power system, healthcare, hospitals

Highly reliable data centers using managed PDUs

by Emerson Network Power on 10/8/15 9:09 AM

Ronny Mees | Emerson Network Power

24

Today’s most innovative data centers are generally equipped with managed PDUs since their switching capabilities improve reliability. However, simply installing managed PDUs is not enough – an “unmanaged” managed PDU will actually reduce reliability.

So how do managed PDUs work? These advanced units offer a series of configurations which – if properly implemented – improve the availability of important services. The main features are Software Over Temperature Protection (SWOTP) and Software Over Current Protection (SWOCP), which are well described in the blog post “Considerations for a Highly Available Intelligent Rack PDU”.

It is also well-known, that managed PDUs can support commissioning or repairing workflows in data centers. The combination of well designed workflows and managed PDUs pushes the operational reliability to a higher level.

In high performance data centers, using clusters, another important point comes into play: clusters are complex hierarchical structures  of server farms, which are able to run high performance virtual machines and fully automated workflows.

As described here or here, such clusters are managed by centralized software together with server hardware.

Over the last couple of years cluster solutions have been developed following strong and challenging availability goals, in order to avoid any situation, which make physical servers struggle within the cluster. However, there would still be the risk of applications and processes generating  faults and errors and screwing-up the complete cluster, unless there was an automated control process – the good news is: there is.

rack-blog-post-709x532

The process which controls those worst case scenarios is called fencing. Fencing automatically kicks out of the cluster any not working nodes or services in order to maintain the availability of the others.

Fencing has different levels, which are hopefully wisely managed. In a smooth scenario fencing will stop disturbing services, or re-organize storage access (Fibre channel switch fencing) to let the cluster proceed with its tasks.

Another power fencing option is also called “STONITH” (Shoot The Other Node In The Head) and allows the software to initiate an immediate shutdown (internal power fencing) of a node and/or a hard switch off (external power fencing).

The internal power fencing method uses IPMI and other service processer protocols, while the external power fencing uses any supported network protocol to switch of a PDU outlet.  It is recommended to use secured protocols only, such as SNMPv3. So managed PDUs as MPH2 or MPX do not only support a nice power balance, monitor power consumptions or support datacenter operations workflows – they also allow the fence software to react quickly for higher cluster reliability. So it’s not a secret that cluster solutions manufacturers – e.g. Red Hat with RHEL 6.7 and newer – openly support such managed rack PDUs.

For More Emerson Network Power Blogs, Click Here

Read More

Topics: Data Center, PUE, robust data center, Containment, efficient data center, DVL, electrical distribution, energy, Battery, Thermal Management, energy efficiency, 7x24, PDU

Emerson Network Power Announces Water and Energy-Saving Liebert® DSE with Liebert EconoPhase Economizer Approved for California Data Centers

by Marissa Donatone on 10/6/15 9:27 AM

Designed to save millions of gallons of water and increase energy efficiency by up to 50 percent

liebert-dse-mediumColumbus, Ohio [September 16, 2015] – Emerson Network Power, a business of Emerson, (NYSE: EMR) and the world’s leading provider of critical infrastructure for information and communications technology systems, today announced that the California Energy Commission (CEC) has approved the use in California data centers of the Liebert® DSE thermal management system with the Liebert EconoPhase Pumped Refrigerant Economizer. The Liebert DSE system represents a break-through technology that uses no water and saves up to 50 percent of thermal energy, through its patented design and advancedLiebert iCOM™ controls.  

“The Liebert DSE system is a great environmental steward. When used in a typical mid-sized data center of one megawatt load, the Liebert DSE is significantly more efficient than current cooling systems, and eliminate the use of around four million gallons of water each year. If deployed broadly in California data centers, the Liebert DSE with EconoPhase could save hundreds of million gallons of water every year,” said John Peter Valiulis, vice president North America marketing, thermal management, Emerson Network Power.
 
The CEC has approved the Liebert DSE system with Liebert EconoPhase as a prescriptive economization option, as part of Title 24 of the the CEC’s 2103 Building Energy Efficiency Standards For Residential and Non Residential Buildings, meeting the code’s requirements for energy efficiency and its prescriptive requirements for economizers.
 
The Liebert DSE system eliminates the need for any water in the heat rejection process and associated chemical water treatment, and it eliminates the risk of exposure to harmful waterbound bacteria. In addition, the Emerson modeling for the CEC compliance program demonstrated an 8 to 10 percent reduction in the data center Time Dependent Valuation measure, compared to the water economizer prescriptive option. The Liebert DSE system design also reduces or eliminates several of the power components associated with water economizers. In actual usage, the entire Liebert DSE system has demonstrated thermal system energy savings of up to 50 percent over older legacy systems.
 
For more information on Emerson Network Power’s Liebert DSE with EconoPhase or other products and solutions, visit www.EmersonNetworkPower.com.
 
 
About Emerson Network Power
Emerson Network Power, a business of Emerson, is the world’s leading provider of critical infrastructure technologies and life cycle services for information and communications technology systems. With an expansive portfolio of intelligent, rapidly deployable hardware and software solutions for power, thermal and infrastructure management, Emerson Network Power enables efficient, highly-available networks. Learn more at www.EmersonNetworkPower.com.
 
About Emerson 
Emerson, based in St. Louis, Missouri (USA), is a global leader in bringing technology and engineering together to provide innovative solutions for customers in industrial, commercial, and consumer markets around the world. The company is comprised of five business segments: Process Management, Industrial Automation, Network Power, Climate Technologies, and Commercial & Residential Solutions. Sales in fiscal 2014 were $24.5 billion. For more information, visit www.Emerson.com.
 
Media Contact:
Vince McMorrow
614-383-1622
vince.mcmorrow@fahlgren.com
Read More

Topics: data center infrastructure, data center design, DVL, energy, DC Power, critical air conditioning, HVAC, Thermal Management, capacity, cooling, Data Center efficiency, ASHRAE, power, water cool

Top 4 Reasons to use DVL Service

by Marissa Donatone on 7/22/15 10:27 AM

DVL_Service_infographic
Read More

Topics: Data Center, energy, service, HVAC, Uptime, Power and Cooling, 7x24

Cut Thermal System Energy Use by up to 50%

by Marissa Donatone on 5/22/15 1:39 PM

Electrical_Engineering_highresMake sure to catch Emerson Network Power's Critical Advantage Webcast Series on Tuesday, June 9, at 1 p.m. ET

The New Era of Thermal Controls: See Where They Can Take Your Data Center

Thermal systems account for 38% of data center energy usage. A new generation of thermal system controls can help you reduce it.

Find out how by attending our Emerson Critical Advantage Webcast on May 18 – where we introduce the industry’s latest innovation in thermal system controls: the all-new Liebert® iCOM™ controls.

During our webcast, you’ll see how this new technology can:

  • Improve thermal system energy efficiency by up to 50%
  • Maximize thermal performance by harmonizing multiple cooling systems
  • Better protect your data center by improving air flow and air temperature control
  • Identify and resolve adverse conditions before it’s too late
  • Extend the life of cooling equipment by reducing wear and tear
  • Simply and easily gain insight for action into real-time thermal system operation and metrics
  • Manage every thermal system device with a single system


Register today.

Read More

Topics: Emerson Network Power, Data Center, energy, Energy Star, Thermal Management, energy efficiency, webcast, performance, iCom

Subscribe to Our Blog

Recent Posts

Posts by Tag

see all